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SUMMARY

Numerical solutions of 2D magneto-hydrodynamic (MHD) equations by means of a fluctuation splitting
(FS) scheme (with a new wave model and dual time stepping technique) is presented. The FS scheme,
essentially based on the model explained in Proceedings of the Tenth International Conference, vol. 10,
Swansea, 21–25 July 1997; Godunov Symposium, University of Michigan, Ann Arbor, 1–2 May 1997;
Physics Symposium, Alanya, Turkey, 27–31 October 1998; J. Comput. Phys. 1999; 153:437–466; Ph.D.
Thesis, University of Marmara, Istanbul, Turkey, 2000), was extended to include gravitational source
effects, limiters to limit oscillations, high order time accuracy through multistage Runge–Kutta steps, and
a dual time stepping scheme to drive magnetic field divergence to zero during iterations. The numerical
results show that with the new wave model called MHD-B along with its embedded numerical dissipation,
correct limiting viscosity solution has been recovered and that it can safely be used in order to investigate
steady or time dependent magnetized or neutral compressible flows in two dimensions. Copyright q 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Conservative finite difference or finite volume schemes based on higher-order Godunov methods
have been effectively used to compute the solutions of hyperbolic systems of conservation laws
[1–3]. Most of these schemes are based on evaluating the numerical fluxes across the neighbouring
cell boundaries by means of left and right states. First FS scheme which does not require such
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1586 Ş. BALCI AND N. ASLAN

numerical fluxes has first been proposed by Roe [4, 5] in order to solve Euler Equations. The FS
schemes are designed in an upwind manner since the solution residual (i.e. fluctuation) in a typical
mesh is distributed only to its downstream nodes. These distributed fluctuations due to a number
of waves are determined on each triangular cell by taking the area integral of flux divergence. The
numerical scheme including the wave model: MHD-B differs fromMHD-A mainly [6] because of a
new artificial monopole function, � employed to handle the divergence constraint by sub-iterations.

In the next section, the wave model MHD-B including the external source effects and the new
monopole function, � will be described in detail. This extended numerical method will then be used
to solve two-dimensional test problems such as Kelvin–Helmholtz (KH) instability, supernovae
explosions, wedge flows, etc. The numerical results of such tests presented in the last section
suggest that MHD-B can be safely used in order to investigate the MHD flows and that it is more
effective than MHD-A since, unlike MHD-A, the divergence constraint is handled to machine
accuracy.

2. FLUCTUATION SPLITTING SCHEME WITH SOURCES

The ideal MHD equations which include the gravitational effects and new monopole function (�)

are given by the following conservative form with the numerical divergence source [7]:

�
�t

⎡
⎢⎢⎢⎢⎢⎣

�

�v

B

E

⎤
⎥⎥⎥⎥⎥⎦+ �∇ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v

�vv + I P� − BB
4�
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H ��v − B
4�

(B · v − �I )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− B
4�

−v

−B · v
4�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�∇ · B +

⎡
⎢⎢⎢⎢⎢⎣

0

−�g

0

−�g · v

⎤
⎥⎥⎥⎥⎥⎦ (1)

where I is the 3× 3 unit matrix, � is the density, v is the velocity, B is the magnetic field intensity,
P is the pressure, P� = P + B2/8� is the total pressure, H � = (E + P�)/� is the total entalphy,
E = P/(� − 1) + 1/2�v2 + B2/8� is the total energy, � is the ratio of specific heats, and g is the
gravitational acceleration. Note that the divergence source appearing in Equation (1) results from
inserting an artificial monopole wave into the eigen-system of MHD equations in order to stabilize
them against non-zero divergence of the magnetic field. This idea was first addressed by Aslan [8],
and then utilized successfully in References [9–11]. In addition, possible divergence free elements
and their implementation can be found in References [12, 13]. In Cartesian geometry, the planar
(vz, Bz = 0, �/�z = 0) form of the MHD equations can be written as

�U
�t

+ �∇ · �F=Sdiv + Sgrav, �F= (F,G) (2)

where U=[�, �vx , �vy, Bx , By, E]T is the conservative state vector, F and G are the flux vectors
given by

F=
[
�vx , �vx

2 + P� − B2
x

4�
, �vxvy − Bx By

4�
, 0, vx By − Bxvy + �, �H �vx − Bx

4�
(B · v + �)

]T
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G=
[
�vy, �vxvy − By Bx

4�
, �vy

2 + P� − B2
y

4�
, vy Bx − Byvx + �, 0, �H �vy − By

4�
(B · v + �)

]T

and Sdiv, and Sgrav are, respectively, divergence and gravitational sources given by

Sdiv = �∇ · B
[
0,− Bx

4�
, − By

4�
, −vx , −vy, −B · v

4�

]T

Sgrav =[0, 0, −�g, 0, 0, −�gvy]T

where T is the transpose of the row vectors.

3. TEMPORAL DISCRETIZATION: DUAL TIME STEPPING

The MHD system given by Equation (1) has difficulties due to the divergence condition (i.e.
�∇ · B= 0) which causes wrong physics if not handled properly. The time evolution of the MHD
equations is performed here such that the artificial monopole function corrects the magnetic field
within the pseudo iterations (�) between the physical time levels. In these pseudo-iteration levels,
� is iterated until the equilibrium is reached (i.e. ��/�� → 0 thus �∇ · B → 0) regardless of the
value of the artificial monopole parameter, �2, defined in

��

��
+ �v · �∇� = −�2 �∇ · B − �2� (3)

where � is the pseudo time step. This relaxation equation is solved for � during the pseudo
iterations so that by adding �∇� to the Faraday’s law and its counterpart: B/4� · �∇� to the energy
equation the magnetic field is corrected. Note that �2 and �2 in Equation (3) are relaxation constants.
In addition, the terms on the right-hand side of Equation (3) can be neglected for the problems
seeking steady state. This numerical technique of employing an artificial scalar function and how
it is used in a relaxation scheme were explained in Reference [14]. The scheme described here is
a modified version of this idea since it also includes two artificial monopole waves resulting in a
more efficient divergence cleaning. In order to develop a compact scheme is done by combining
the real time evolution in Equation (1) and the pseudo time relaxation equation in Equation (3).
In this case, the state vector is extended to

U=[�, �vx , �vy, Bx , By, E, �]T (4)

and Equation (3) is added to Equation (1). In this case, the following quasilinear form of MHD
equations, including the effects of �, is obtained:

�U
��

+ Im
�U
�t

+ Au(�
2)

�U
�x

+ Bu(�
2)

�U
�y

= Su (5)

where Im = diag[1, 1, 1, 1, 1, 1, 0] is the diagonal matrix used to separate the pseudo-iterations for
� from the physical time iterations. Here Su =Sdiv + Sgrav are the sum of divergence and source
vectors which have an additional zero component associated with �. In addition, Au = �F/�U,
and Bu = �G/�U are 7× 7 the flux Jacobian matrices including the effects of � in their last
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1588 Ş. BALCI AND N. ASLAN

rows. Note that, this procedure is nothing but modifying the divergence condition to employ
a relaxation equation for artificial magnetic monopole function in order to iterate advanced in
pseudo time. In that case, the magnetic field will be corrected before the new time level is reached.
When this modified equation system reaches steady state in pseudo time (i.e. ��/�� → 0) the
function � will have completed its role of correction and the following time accurate solution will
be recovered:

Im
�U
�t

=Res(U, �2) (6)

where

Res(U, �2) = − Au(�
2)

�U
�x

− Bu(�
2)

�U
�y

+ Su (7)

is called the residual vector. As done in Reference [15], the real time derivative is approximated
by the following second-order accurate 3-level formula:

�U
�t

= 3

2�t
(Un+1 − Un) − 1

2�t
(Un − Un−1) (8)

where n is the time step. By combining the real time levels with those of the pseudo time, one
gets

Un+1,m+1 − Un+1,m

��
+ Im

[
3(Un+1,m+1 − Un)

2�t
− (Un − Un−1)

2�t

]
=Resn+1,m+1 (9)

where m is the pseudo time iteration level. By adding and subtracting Un+1,m to the first term in
the bracket in Equation (9) and combining the resulting terms with the left-hand side, the above
equation can be written as

Un+1,m+1 − Un+1,m

��
= −I ′

m

[
3(Un+1,m − Un)

2�t
− (Un − Un−1)

2�t

]
+ Resn+1,m+1 (10)

where I ′
m =[I + 1.5��/�t Im]−1 Im is the modified diagonal matrix and I is the 7× 7 unit matrix.

By doing this, the time derivative term was made explicit but the residual still requires the implicit
treatment. To establish that, implicit time stepping technique or explicit RK time algorithms can be
employed. Although the implicit time stepping algorithms provide very quick convergence rates,
it is very difficult to implement them on unstructured triangular grids. Instead, multi-stage RK
algorithm given below was used to improve the solution vector for the next pseudo time iteration
(with the levels m replaced by k)

Un+1,k+1 =Un+1,k + ak
[
I + 1.5

��

�t
Im

]−1

[Resn+1,k+1]∗

[Resn+1,k+1]∗ =Resn+1,k − Im

[
3(Un+1,k − Un)

2�t
− (Un − Un−1)

2�t

] (11)
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where k is the number of RK stages and ak is the RK parameters. The third-order accurate RK
method (used in this study) which is positive and oscillation free is given by [16]

U1 =Un + �t Res(Un)

U2 = 3Un + U1

4
+ �t

4
Res(U1)

Un+1 = Un + 2U2

3
+ 2�t

3
Res(U2)

(12)

After the RK steps are completed, one gets Un+1,k+1 →Un+1,m+1 and by the end of pseudo
iterations, Un+1,m+1 →Un+1 recovering Equation (6) and obtaining the corrected solution at the
new time level n + 1. The numerical experience shows that the pseudo iterations (including sub
RK levels) usually converge within 5–10 iterations, see Figure 5. A similar form of dual time
stepping algorithm was explained in Reference [15].

4. SPATIAL DISCRETIZATION AND WAVE MODEL: MHD-B

The derivation of the MHD wave model is easier when the state in primitive form (i.e. W=
[�, vx , vy, Bx , By, P, �]T) is used since its eigen-system is less complicated. This primitive form
can be obtained by premultiplying Equation (5) by the inverse of the matrix: M = �U/�W. This
form is given by

�W
�t

+ (Aw, Bw) · �∇W=Sw (13)

where Sw = M−1Su and Aw = M−1AuM , Bw = M−1BuM . Model-B utilizes the matrix An =
(Aw, Bw) · �n� = Aw cos � + Bw sin � given by

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn � cos � � sin � 0 0 0 0

0 vn 0 − By

4��
sin �

By

4��
cos �

cos �

�
0

0 0 vn
Bx

4��
sin � − Bx

4��
cos �

sin �

�
0

0 −By sin � Bx sin � vn 0 0 cos �

0 By cos � −Bx cos � 0 vn 0 sin �

0 �P cos � �P sin � (� − 1)UB (� − 1)UB vn 0

0 0 0 �2 cos � �2 sin � 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where UB = vx Bx + vy By and n� represents the angle at which MHD waves propagate, and
vn = v · �n� is the speed along the wave propagation direction �n� (see References [6, 7] for details).
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Notice that the effect of � is evident from the 7th row and 4–5th-columns of An . This 7× 7 matrix
has 7 eigenvalues that represent an entropy wave, two slow and two fast magneto-acoustic waves,
and two new artificial magnetic monopole waves. They are given by

� : vn − u f , vn − us, vn, �
−
m, �+

m, vn + us, vn + u f (15)

where � = vn is the entropy eigenvalue, while vn±u f and vn±us are fast and slow magneto-acoustic
eigenvalues, respectively. Here u f and us are fast and slow speeds given by

u f = [ 12 [a2 + u2B + [(a2 + u2B)2 − 4a2u2n]1/2]]1/2

us = [ 12 [a2 + u2B − [(a2 + u2B)2 − 4a2u2n]1/2]]1/2
(16)

with Bn =B · �n�, u2n = B2
n/4��, and u2B = B2/4�� and a = √

�P/�, the sound speed. In addition,
�± are the artificial monopole eigenvalues given by �±

m = vn/2±√v2n/4 + �2 when the convection
terms in Equation (3) are ignored. These eigenvalues turn into �±

m = vn ±√
�2 when the convection

terms are not neglected. In that case, the last diagonal term in the Jacobian matrix given by Equation
(14) turns into vn . The right eigenvectors of An are given as the following column matrix in the
same order of eigenvalues given in Equation (15):

Rw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� � 1 0 0 � �

−r2 f −r2s 0 0 0 r2s r2 f

−r3 f −r3s 0 0 0 r3s r3 f

−r4 f sin � −r4s sin � 0 cos �m cos �m −r4s sin � −r4 f sin �

r4 f cos � r4s cos � 0 sin �m sin �m r4s cos � r4 f cos �

�P �P 0 0 0 �P �P

0 0 0 −�−
m −�+

m 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where r2s, f , r3s, f and r4s, f are the same as given in References [7, 6]. Note that the last terms

of the ± monopole eigenvectors turn into ±√
�2 when the convection terms in Equation (3) are

retained. Since the MHD system is hyperbolic in type, the gradient in W can be projected onto
the right eigenvectors of the matrix in Equation (14)

�∇W=∑
	

�	r	w �n	
� (18)

and the wave strength of the 	th wave can be found from

�	 = l	w �∇W · �n	
� (19)

where l	w is the left eigenvectors normalized by l	wr
m
w = 
	,m and �n	

� is the propagation direction
of this wave. Thus, the gradient in W results in the following conservative state and flux vector
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Figure 1. (a) Triangle with inward normals �ni = (y j − yk)êx − (x j − xk)êy whose lengths are equal to
their associated sides; and (b) median dual cell area Si around node i .

gradients:

�∇U=∑
	

�	r	u �n	
� and �∇F=∑

	
�	�	r	u �n	

� (20)

where r	u = Mr	w is the conservative right eigenvector.
The FS scheme presented here is developed for triangular meshes in which the physical quantities

are stored on their vertices. A typical triangle and its associated median dual cell area (Si ) are
shown in Figure 1. Equation (5) is solved on such a typical triangle T , by integrating it over its
area, ST

�T =
∫ ∫

ST
Ut dS =−

∫ ∫
ST

[
Au

�U
�x

+ Bu
�U
�y

]
dS +

∫ ∫
ST

Su dS (21)

where the term �T is called the fluctuation or average time rate of conservative state in the triangle.
The flux integral in Equation (21) can only be evaluated approximately by means of a parameter
state vector (Z) which leads to a Jacobian which is linear in terms of its components. This parameter
state vector (Z) is assumed to vary linearly over the triangle; therefore, its cell average can be
found from Z=[Zi + Z j + Zk]/3 where i, j, k are the vertices of the triangle (see Figure 1(a)).
The form of Z can be found for the Euler equations uniquely by analytically solving the Rankine–
Hugoniot (R–H) relations (i.e. �∇F=A(Z) · �∇U) for the components of Z (here F= (F,G) and
A= (Au, Bu). In MHD constructing such a parameter vector is very complicated and impractical;
therefore, an approximate form is used [6]

Z=[√�,
√

�vx ,
√

�vy, Bx , By,
√

�H∗, �]T (22)

With this parameter vector, most of the elements of Jacobians Az = �F/�Z and Bz = �G/�Z will
be linear in its components so that R–H conditions are approximately satisfied. Provided that such
a parameter state is considered the conservative fluctuation in terms of Z can be found from

�T =−ST [(Au(Z), Bu(Z)) · �∇U − Su(Z)] (23)

where �∇U= M �∇W and �∇W= (Wx ,Wy) can be found from

Wx,y = 1

ST

∫ ∫
ST

Wx,y dS =
(

�W
�Z

)
Z
Zx,y = Mz(Z)Zx,y (24)
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where Mz = �W/�Z and Zx,y = 1/ST
∑

i Zi (�ni )x,y . Utilizing the identities in Equations (20) in
Equation (23) gives rise to the following fluctuation in T :

�T =−ST

[∑
	

�n	�	r	u �n	
� − Su(Z)

]
(25)

where �n	 is given in Equation (15).
The time rate of Ui in T can be written (to the first-order accuracy) as∫ ∫

ST

�U
�t

dS = Un+1
i − Un

i

�t
Si (26)

where �t is the time step and Si = 1
3

∑
T ST is the median dual cell area around node i (see

Figure 1(b)). Taking all the triangles around node i into consideration and employing the RK time
stepping technique for higher order accuracy, the time rate of U becomes

Un+1,l+1
i =Un,l

i − al
�tn

Si

∑
T

[∑
	

�Ti,K�	,l
T − Slu(Z)

3

]
ST (27)

where �	,l
T = �l	�

l
	r

	,l
u is the conservative fluctuation associated with 	th wave at lth RK iteration

level, al are the RK parameters and �Ti,	 is the distribution coefficient satisfying
∑

�Ti,	 = 1 for
consistency. Note that the source Su(Z) is distributed equally to the nodes of T . See Reference [17]
for a review of possible distribution coefficients.

This scheme is monotone (and hence positive) under the following time step restriction for the
node i of T [18]:

�t i =CFL
Si

|�max|i =CFL
Si

(|v| + u f )i
(28)

where for local stability, the Courant (CFL) number should satisfy CFL<0.5. The global time step
is then found by �t =∑m

i max(�t i ) where m is the total number of nodes in the mesh.
In order to increase the spatial accuracy of this scheme to second-order, the formulation presented

by Sidilkover [19] can be used. Let �	
i = �i

	�	
T and �	

j = � j
	�	

T be the partial residuals assigned
for updating the vertices i and j , respectively, for the two node update case. Then the second-order
scheme is obtained by the following corrected residuals:

�∗
i =�	

i − L

(
−�	

i

�	
j

)
, �∗

j = �	
j − L

(
−�	

j

�	
i

)
(29)

where L(x/y) is the limiter function, employed in conventional upwind schemes [18], which
should satisfy (for positivity)

�(1) = 1, ��0,
�(r)

r
�1

In this work, the following limiters which satisfy the local and global positivity are utilized
[19]: Minmod: �(r) = 1

2 (1+ sgn(r))min(r, 1)), Superbee: �(r) = 1
2 (1+ sgn(r))max(min(2r, 1),

min(r, 2)) where sgn(r) is the sign of r .
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5. WAVE MODEL FOR MHD EQUATIONS

Equation (18) shows that the gradients (i.e. the x and y derivatives) of W is constructed by the
sum of wave fluctuations. Provided that Wx and Wy are found from Equation (24), they can be
written from Equation (18) as

Wx = �1er
1
ecos �e +

3∑
	=2

�	
mr

	
m cos � +

7∑
	=4

�	
�r

	
� cos � −

11∑
	=8

�	
�+�/2r

	
�+�/2 sin �

Wy = �1er
1
esin �e +

3∑
	=2

�	
mr

	
m sin � +

7∑
	=4

�	
�r

	
� sin � −

11∑
	=8

�	
�+�/2r

	
�+�/2 cos �

(30)

Among the total of 11 waves, the first one denotes the entropy wave, the first sum corresponds
to backward and forward artificial monopole waves, the second sum represent the backward and
forward slow and fast magneto-acoustic waves, and finally the last sum coincide with the magneto-
acoustic waves propagating perpendicularly to former magneto-acoustic waves.

When Equations (30) are written explicitly, one can solve the propagation angle and the strength
of entropy wave given by (the same as in MHD-A [4, 11])

tan �e = (�y − (Py/a2))

(�x − (Px/a2))
, �e =

√(
�x − Px

a2

)2

+
(

�y − Py
a2

)2

(31)

When convection terms in Equation (3) are neglected, the artificial backward and forward magnetic
monopole wave strengths and their propagation directions are given by (different from single
monopole wave in MHD-A [4, 6])

�2m = �−
m =−

√
(�2

x + �2
y) + �+

m
�∇ · B

2um
, �3m = �+

m =
√

(�2
x + �2

y) + �−
m

�∇ · B
2um

(32)

�m = tan−1 �y

�x
(33)

where um =√v2n/4 + �2 and �−
m and �+

m satisfying �−
m + �+

m = �∇ · B and corresponding to the
single monopole wave of MHD-A. In addition, these wave strengths assume the forms: �2m =
1
2 [ �∇ · �B −

√
�2

x + �2
y], �3m = 1

2 [ �∇ · �B +
√

�2
x + �2

y] when the convection terms in Equation (3)
are not ignored.

Since � is assumed to vary linearly over the triangle (see Equation (22)), �x and �y can be
found from �x,y = 1/ST

∑
i �i (�ni )x,y . Obviously, this wave has no action when the divergence

condition is exactly satisfied (i.e. �∇ ·B= 0). The dissipation effect of this wave becomes significant
relevant only in the regions where the divergence condition is violated because of discretization
errors. One can also show that the propagation direction of magneto-acoustic waves is given by
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(the same as in Reference [11])

tan 2�= (Bx )y + (By)x

(Bx )x − (By)y
(34)

The strengths of the slow and fast magneto-acoustic waves are given by

��
4/5 = ∓ l3 f

�[ �∇vx · �n�] ∓ l2 f
�[ �∇vy · �n�] − l4 f

� �∇P · �n� + B⊥[(Bx )y − (By)x ]
16��(u2f − u2s )

(35)

��
6/7 = ± l3s

�[ �∇vx · �n�] ± l2s
�[ �∇vy · �n�] + l4s

� �∇P · �n� − B⊥[(Bx )y − (By)x ]
16��(u2f − u2s )

(36)

where �∇P · �n� = Px cos � + Py sin � is the pressure gradient projected onto the wave propagation
direction and l2s, f , l3s, f and l4s, f were given in References [6, 7, 20–22]. Note that the denom-
inators of Equations (35) and (36) cannot vanish unless the pressure and hence the sound speed
vanishes. Replacing the angle � with � + �/2 in Equations (35) and (36) leads to the remaining
wave strengths �8/9�+�/2 and �10/11�+90 .

The main differences between models MHD-A and B are that model-B includes another variable,
� and it includes two divergence waves moving in opposite directions while model-A includes
single divergence wave with wave strength directly related to �∇ · �B. The effects of � is seen in
the last rows and columns of the Jacobian matrix given in Equation (14). Since, the strengths of
these new monopole waves differ in these directions, they can operate in a wider region to detect
points at which �∇ · �B tends to increase. In addition, extra dissipation has the effect of reducing
local errors due to �∇ · �B 	= 0. The numerous tests and the results presented in this paper shows that
MHD-B leads to slightly less divergence errors than model-A. This shows that, different numerical
models can be developed in the future to further reduce divergence errors.

5.1. Solution algorithm

The solution algorithm of the code developed here can be explained as follows: For each
triangle, T

1. get �, vx , vy, Bx , By, E from the solutions of the elements of conservative state vector and
determine pressure from the equation of state: P = E/(� − 1) − 1/2�v2 − B2/8�. By using
the nodal values of the primitive state obtain Z from Equation (22), i.e. the parameter state,
for each node i of T , and then using the matrix: �W/�Z determine mesh averaged primitive
state: W=[�, vx , vy, Bx , By, P,�]T,

2. using 3 nodal values of T , find the mesh averaged parameter vector, and its gradient from
Z= 1

3

∑3
m=1 Zm and �∇Z= 1/2ST

∑3
m=1 �nmZm ,

3. obtain the x and y derivatives of W from Equation (24),
4. find the propagation angles �e, �m and � from Equations (31)–(34),
5. using these angles and averages, find vn = vx cos � + vy sin � and evaluate Z , u f , us from

Equations (16) and get the averaged sound speed from a =
√

�P/�,
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6. get all wave strengths from Equations (31), (32), (35), (36), the eigenvalues from
Equation (15), the right primitive eigenvectors, rw from Equation (17), and the conservative
eigenvectors, ru using the matrix: �U/�W,

7. having determined the eigen-system of 7 individual waves for each wave, k

7.1. get the wave fluctuation from Equation (25) using the averaged values: �k , �k and rku ,
7.2. using the mesh properties and �n(�) = (cos �, sin �), determine the upwind nodes for this

wave and assign �k to these nodes of T using the distribution technique described in
References [19] or [23].

After the contributions of each wave k are obtained at the nodes of the triangles and all the
triangles around nodes are visited, the nodal mesh updates will have been completed and the nodal
values will have reached their values at the new time step, n + 1, see Equation (27).

In this work, the time update given by Equation (27) was carried out by third-order Runge–Kutta
(RK) method for improved time accuracy of the scheme. This third-order accurate RK method
which is positive and oscillation free is given by Equation (12).

The viscous effects (in the form of �∇2U) can be simply included in the scheme by adding
�/4ST

∑3
m=1 ni · nmUm to the residual at node: i of triangle T , see p. 45 of Reference [23].

It must be noted that this scheme can also be extended into three dimensions by considering a
three-dimensional mesh including tetrahedra with four faces and 4 nodes on their corners. In this
case, the area integrals in Equations (21)–(26) turn into volume integrals and the inward normals
shown in Figure 1(a) turn into inward normals which are perpendicular to the faces of tetrahedra
with lengths equal to the face area. In addition, the gradients can be simply obtained by using,
for example: �∇Z= 1

2VT

∑4
m=1 �nmZm where VT is the volume and m = 1 − 4 are the nodes of

tetrahedra, see Reference [23]. The 3D version of this code is currently being developed by the
second author of this paper.

6. NUMERICAL RESULTS

In order to present the capability of the new scheme described here, a number of test problems
were solved on a variety of meshes. The resulting graphs of the physical quantities such as density,
pressure, Mach number and magnetic pressure are presented along with accuracy study, residual
and divergence convergence errors. Some of the test problems were solved with both the older
scheme: MHD-A and the new scheme: MHD-B. Comparisons show that the new scheme is as
good as the previous one (mostly better) and that it can safely be used to investigate the magnetized
flows including shocks.

6.1. Supersonic shock reflection

The first test problem is the MHD version of classical Mach= 2.9 flow in a rectangular domain of
x ∈ [0, 4] and y ∈ [0, 1], see Reference [11] for the details. This is an excellent shock reflection test
to show how the new monopole waves are able to eliminate divergence errors so that physically
correct solutions (i.e. a 29◦ supersonic shock with � = 1.4) reflecting from the lower boundary are
obtained.
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Figure 2. A typical isotropic mesh used for the shock reflection test.

The analytical boundary conditions on the left and upper boundaries are (see Reference [6])
WL =[1, 2.9, 0, √�, 0, 1/�]T, WU =[1.46, 2.717,−0.405, 2.424,−0.361, 1.223]T

while the lower and right boundaries were chosen to be reflective and outgoing, respectively. The
only action performed was to set vy to zero on the lower boundary to accomplish reflection and
the states on the right boundary were simply untouched during iterations so that this boundary is
treated as outgoing.

By using the left state values as initial conditions, this test problem was solved (by both model-A
and new model MHD-B) on 41× 11, 81× 21, and 161× 41 isotropic meshes (see such a mesh
in Figure 2) until t = 10 (with nearly 4000 iterations with a CFL number of 0.4). The resulting
divergence errors and maximum residuals for these meshes are presented in Figure 3 as a function
of time. As seen, the divergence error reduces as the mesh is made finer, a requirement for the
scheme convergence. In addition, the results obtained by model: MHD-B produces less divergence
errors although the residual errors are comparable with those of model-A. These results show that
model MHD-B provides slightly better accuracy than MHD-A for such a steady state problem.
Note that, in order to compare both models, the dual time stepping technique described in Section 3
was not activated in the computer code to obtain an identical comparison among the graphs of
Figure 3. In both models, third-order RK time stepping was used with a CFL number of 0.4.

By using the readily available data in the residual and divergence convergence graphs in Figure 3,
one can plot the convergence characteristics as a function of number of grids. According to these
data values, one can see that the errors reduce as the number of grid points is increased (i.e. as
the mesh is made finer). This result is presented in Figure 4. During the pseudo iterations the
residual drops to a prescribed tolerance with a number of iterations. This situation is presented in
Figure 5 for the current test problem. As seen, the convergences are exponential and the necessary
number of iterations reduce in time. This shows the good convergence characteristics of model-B
presented here. Figure 6 shows the density and Mach number contours on two different isotropic
meshes for models MHD-B and MHD-A (at t = 4), respectively. As seen, the reflected shock is
as sharp as the incident one and there exists no problems on the outgoing boundary. The graphs
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Figure 3. The divergence error and residual for model: (a) MHD-A; and (b) MHD-B as a function of
time for shock reflection test on 41× 11, 81× 21 and 161× 41 isotropic meshes.

in this figure show that MHD-A and MHD-B produce similar results although, MHD-B leads to
less divergence errors.

6.2. Kelvin–Helmholtz instability

The second test problem is the Kelvin–Helmholtz (KH) instability, a vortex flow which arises from
the velocity shear between two fluid media flowing in opposite directions. When this instability
takes place, rotating vortices appear near the initial boundary between the fluids. It must be noted
that the gravitational effects are ignored in this test. For the simplest case, a rapidly changing
velocity profile in y direction from v1 to v2 (the velocities on the two sides of the interface) is
used. In this case, the instability takes place if the velocity jump satisfies [24]

�v = |v1 − v2|>2uB (37)

where uB =√B2
x/4�� is the Alfven velocity and Bx is the x-component of the magnetic field

that can stabilize this instability (see Figure 7). Whether initial velocity jump causes K–H
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Figure 5. The pseudo convergence as a function of time iterations for shock reflection test.

instability or not depends on the horizontal magnetic field strength. Assume that the velocity jump in
y direction is 5 and that � = 1 and Bx0 =√

4� are considered. In this case one gets uB = 1 which
is smaller than �v = 5, thus the K–H instability is expected to take place giving rise to rotating
vortices and fluid mixture. When the field strength is tripled, i.e. Bx0 = 3

√
4� taken one gets uB = 3

and since �v<2uB , the K–H instability is expected to be stabilized during the time evolution.
This problem was solved on 91× 181 isotropic triangular grid of x ∈ [0, 1], y ∈ [−1, 1] with the
dual time stepping algorithm employed. The boundary conditions on the left and right boundaries
were taken as periodic and the other boundaries were assumed to be outgoing (free) boundaries
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Figure 6. The density, and Mach number contours for shock reflection test on 41× 11 and 161× 41
isotropic meshes for models MHD-B and MHD-A.

(see Figure 7). The initial conditions with a jump in vx and a small perturbation in vy are given
as follows:

vx = 5 tanh(20y), vy = 0.25 sin(2�x)e−100y2

g= 0, � = 1, Bx = Bx0, By = 0, P = 50, � = 1.4

With this initial configuration, a shear region is introduced along the interface at y = 0 separating
the fluids moving above and below it. Note that the instability is activated by the y component
of the velocity given as a small perturbation. Figure 8 shows the resulting density graphs at two
different times for the weak magnetic field. As seen, initially constant density and velocity jump
creates rotating vortices and K–H instability develops leading to the mixing of fluids on both sides
of the shear layer.
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Figure 7. The initial velocity profile for the Kelvin test.

Figure 8. Density graphs for Kelvin–Helmholtz test with weak field on
91× 181 iso mesh at different times.

The same test problem was also solved for a strong magnetic field (Bx0 = 3
√
4�) using the

same procedure. The resulting density graphs are shown in Figure 9. As seen, when the magnetic
field along the shear layer is so strong that the opposite flows along the boundary do not mix
with each other and that the rotating vortices do not appear in the shear layer during the time
evolution. These results show that the numerical results are consistent with physical expectations
for the Kelvin–Helmholtz instability. These results are similar to those obtained by Frank et al. [24]
where physical resistivity and viscosity are used.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1585–1611
DOI: 10.1002/fld



FLUCTUATION SPLITTING AND DUAL TIME STEPPING 1601

Figure 9. Density graphs for Kelvin Helmholtz test (with strong magnetic field) on
91× 181 iso mesh at different times.

6.3. Wedge flow test problem

This test problem is a stationary wedge flow over � = 30◦ wedge. This test was solved on a mesh
of x ∈ [0, 1], y ∈ [y(x), 1] where y(x) defines the wedge. A uniform supersonic horizontal inflow
with a horizontal magnetic field of Bx = 4

√
4� is imposed on the left boundary, with

vx = 8, vy = 0, � = 1, P = 1, � = 5/3

The sonic and Alfvenic inflow Mach numbers are thus M = 8
√
3√
5
and MA =

√
v2x + v2y/uB = 2 so

the flow is supersonic and super-Alfvenic. At the lower and upper boundaries ideal wall symmetry
conditions are imposed. The wedge geometry causes the formation of a fast MHD shock through
which the plasma flows out freely at x = 1. The lower boundary is described by y(x)= 0 for
x ∈ [0, 0.3] and y(x)= tan(30◦)(x − 0.3) for x ∈ [0.3 + 0.1 cos(30◦), 1]. Figure 10 shows the
density graphs obtained at t = 0.8 (at which the steady-state is achieved) on three different left
diagonal meshes. Note that no special action is performed on the tip of the wedge in order to
make the strong plane discontinuity stable. In Figure 11, the density profiles in x direction at
y = 0.7 are shown as a function of grid resolution. As seen from these figures, the solutions
at increasing resolution display convergence. These results agree well with those presented in
Reference [25].

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1585–1611
DOI: 10.1002/fld
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Figure 10. Density graphs obtained at t = 0.8 (steady-state) on the 21× 31,
41× 61, 71× 101 left diagonal meshes.
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Figure 11. Density profiles for the wedge problem at y = 0.7 for different left diagonal meshes.

6.4. Supersonic channel flow

In this test problem, a steady state supersonic flow through a channel which has a smoothly
varying cross section (i.e. the bottom wall with a sine square profile) is solved. The domain
considered is a rectangular channel with x ∈ [0, 7], y ∈ [0, 1] and the bottom profile is given by
y(x)= 0.2 sin2[�(2 − x)/4] for x<2 else y = 0. A typical isotropic mesh used in calculations
is shown in Figure 12. A uniform supersonic horizontal inflow with horizontal magnetic field is
imposed at the left boundary, x = 0, with

vx = 2
√

�, vy = 0, Bx = √
4�, By = 0, � = 1, P = 1, � = 5/3

The sonic and Alfvenic inflow Mach numbers are thus M = 2 and MA =
√

v2x + v2y/uB = 2
√

�.

At y = 0 and y = y(x), ideal wall symmetry conditions are imposed and the plasma is allowed to
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Figure 12. A typical mesh with right running diagonal triangles.

Figure 13. Residuals for supersonic channel flow for different mesh resolutions
obtained for Euler limit, i.e. B = 0.

flow out freely at x = 7, where the (horizontal) out flow is supersonic. Figure 13 shows the time
behaviour of the log of maximum solution residual on three different meshes in order to present
the convergence property of the scheme for the Euler limit (i.e. B= 0). As seen, the residual gets
smaller and it remains constant after nearly t = 5 for all the meshes. Figure 14 shows the density
and Mach number graphs at 281× 41 mesh obtained at t = 6 and Figure 15 shows the x-profiles
Mach number obtained at y = 0.3 and at y = 0.7 at the same time on the 281× 41 mesh. The
Mach number profile in Figure 5.19 of Reference [23] for y = 0.3 maximizes to 2.42, 2.51, 2.32
at x = 1.8, 5.1, and 6.5, respectively, for a very fine grid of 114 990 nodes. It can be seen that our
results with only 11 521 nodes agree well with these results as Figure 15 is examined. The results
at y = 0.7 also agree well with those in Reference [23]. The same problem was solved on the
same mesh with the existence of a horizontal initial magnetic field of Bx = 1. The resulting log of
solution residual as a function of time and the density and pressure graphs are shown in Figures 16
and 17, respectively. As seen from these figures, the convergence is good and the horizontal field
alters the compression fan above the tip of the bottom profile causing more reflections from the
upper wall. These results show how a horizontal magnetic field alters the flow structure inside the
supersonic channel when the fluid is charged.
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Figure 14. Density and Mach number graphs obtained at 281× 41 mesh
at t = 6 (for Euler limit, i.e. B = 0).

Figure 15. Mach number profiles in x direction (for Euler limit, i.e. B = 0).

6.5. Explosion tests

In this test, the free expansion of a high pressured gas (confined in a circular region) into the
free medium is presented. This problem was solved with no magnetic field (i.e. B= 0, Euler
limit) and with a strong magnetic field of By = 100 as done in Reference [26]. The solution
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Figure 16. The residual time history for supersonic channel test for Bx = 1 case.

Figure 17. Density and pressure graphs at t = 6 on 281× 41 mesh for Bx = 1 case.

domain considered was x ∈ [−50, 50] and y ∈ [−50, 50] and the high pressure region is centred
within a radius of r = 10. Initially �= 1, �v = 0 and �= 2 were taken and Pin = 100 and Pout = 1
were considered. The problem with no magnetic field was solved on 241× 241 isotropic mesh
with a CFL number of 0.8 until the steady-state conservation is established. The resulting den-
sity, pressure, kinetic energy, and Mach number contours at t = 3 are shown in Figure 18. In
addition, Figure 19(a) shows the density profiles obtained at y = 0 on the 61× 61, 121× 121,
241× 241 meshes. Figure 19 also includes the scanned density profile obtained in Reference [26].
As seen, Figures 19(a) and 19(b) (scanned from Reference [26]) are almost identical; thus
it can be said that the results presented here agree very well with those of Reference [26].
This shows that the code performs very well whenever planar or circular symmetry exists in the
solutions when magnetic field vanishes. The solutions show anisotropy when strong magnetic field
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Figure 18. The solution of explosion case with By = 0 on 241× 241 isotropic mesh at t = 3.

is applied as shown in Figure 20 where a strong magnetic field (i.e. By = 100) case were presented.
These results are also similar to those presented in Reference [26].

6.6. Gravitation test: superbubble explosion

This problem is an astrophysical superbubble explosion test that includes the gravitational effects.
The initial conditions (same as those given by Mineshige et al. [27]) are such that the density,
pressure and horizontal magnetic field changes in the vertical direction. An intense explosion is
initiated within a spherical region of a small radius by a high pressure such that the temperature
and plasma beta remains constant everywhere initially.

The medium is an ideal gas, with the ratio of specific heats of � = 5/3, the fields are chosen as:
v= 0, By = 0, Bx 	= 0, and the gravity in the y direction (g= − g0êy) is constant. According to
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Figure 19. Density profiles for the explosion test for the Euler limit along y = 0, the
centreline: (a) the current solutions; and (b) the solution obtained by Reference [26]

with 100× 100 finite difference grid points.

these assumptions, the steady-state (�/�t → 0) momentum equation in y direction becomes

�
�y

(
P + B2

x

8�

)
= −�g (38)

Note that, the divergence condition requires �Bx/�x = 0 and this results in �P/�x = 0 showing
that the magnetic field and pressure is independent of x . Using the definition of initial constant
plasma beta (�= P/B2

x /8�) and the ideal equation of state (EOS) given by

P = �RT/� (39)

where � is the molecular weight, in this equation one gets

RT/�

(
1 + 1

�

)
��

�y
= −�g (40)

whose solution leads to the following an exponential profile in density, pressure, and horizontal
magnetic field as follows:

�= �0e
−�y, P = P0e

−�y, Bx =
√
8�RT�

��
(41)

where � = g�0/P0�(1 + 1/�) is a parameter which is linearly dependent on gravity. These
density, pressure, and magnetic field profiles given by Equation (41) were chosen as the initial
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Figure 20. The solution of explosion case with By = 100 on 241× 241 isotropic mesh at t = 1.

condition except in the explosion region. This problem was solved on isotropic triangular meshes
of x ∈ [0, 1], y ∈ [0, 1] and all the boundaries were assumed to be outgoing (free) boundary. The
explosion was initiated by releasing a higher pressure gas confined in a circular region into the
medium. Since beta is assumed to be constant everywhere, the magnetic field also has a jump
across the explosion boundary. Note that the solutions depend on four free parameters, namely,
g, �0, P0 and �. In order to obtain solutions suitable for the comparison with the results given
in Reference [27] (in which � = 0.83 was taken), the initial explosion radius was chosen to be
r = 0.022 and the free parameters were adjusted as: �0 = 1, � = 1, P0 = 0.15, and g= 1. The time
history of resulting density and Mach number colour graphs are presented in Figure 21. As seen,
the explosion region expands and becomes anistropic due to the horizontal magnetic field and
vertical gravity and a shock front appears along vertical direction since Mach number reaches
M = 1.16. These results agree with those presented by Reference [27] in which astrophysical units
were considered. In this reference, density and Mach number profiles (at t = 0, 5.2, and 10.6Myr)
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Figure 21. Density and Mach number graphs for obtained at different times for � = 1, g= 1 and �0 = 1.

are given as a function of the vertical direction. Although the normalizations in this paper and
those in Reference [27] are different, we can compare our results by following the location of the
shock wave expanding towards mesh boundaries. Figure 5 of Reference [27] shows that the shock
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Figure 22. Mach number and density profiles in vertical direction at x = 0 obtained at t = 0.015 for two
different meshes of 101× 51 and 201× 101.

front is located near y = 0.33ymax (while ymax = 900 pc) at t = 5.2Myr and log(�/�0) reduces to−3.5 near centre and maximizes at −0.4 before the shock front. The y-profile of our solutions
obtained by adjusting free parameters are given in Figure 22. This figure shows that (although
solutions are diffused a little bit), the shock front is nearly at y = 0.35ymax (while ymax = 1) at
t = 0.015 and log(�/�0) reduces to −3.6 near centre and maximizes at −0.25. This is a reasonably
good agreement with Reference [27] showing that the code presented here can be used for the
astrophysical problems including magnetic fields and gravity.

7. CONCLUSION

The numerical solutions of MHD equations in two dimensions using the new wave model MHD-B
in a fluctuation splitting scheme with the dual time stepping technique are presented. The space
accuracy of model MHD-B is close to second-order and the accuracy of the time integration is high
order by means of multistage time stepping algorithms. The pseudo time stepping was successfully
employed between the time levels in order to reduce the �∇ · B errors. The scheme contains the
gravitational effects and it can easily be modified to include external fields and viscous effects.
The test problems and accuracy graphs presented show that the code is robust and accurate and
that it can be safely used for nonlinear compressible flows.
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